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I. INTRODUCTION 

A. The Problem. 

The purpose of this investigation was to study the relationship 

between shape induced biaxial anisotropy and the geometrical shape of a 

thin magnetic film element. Furthermore, an analytical expression relat­

ing biaxial anisotropy and the shape of an element was developed so as 

to provide a guide for the design of a biaxial memory element. 

Because biaxial anisotropy as experimentally verified is induced by 

the geometrical shape effect of a film, and the shape of the film only 

influences the demagnetizing field distributions inside the film, it is 

reasonable to assume that the biaxial anisotropy comes strictly from the 

demagnetizing energy of the film element. From the experimental results 

as well as the numerical calculations, it is found that for a fixed 

orienting field a star-shaped film as indicated in Figure 1 has the high­

est magnetic energy when the average magnetization is in the 90° position 

(see Figure 2), and the lowest energy when the average magnetization is 

in the 4$° position (see Figure U). The corresponding orientational dis­

tributions of magnetization are shown in Figures 3 and 5* This energy 

difference (between the highest and the lowest energies) can be attributed 

to the biaxial property of the film. 

To solve the continuous distribution of magnetization and hence the 

demagnetizing field in a thin magnetic film constitutes a nonlinear 

minimization problem. For theoretical interest, a general formulation 

for the two dimensional case has been derived in chapter II and it yields 

a total of 15 simultaneous partial differential equations. To solve 
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45 

Figure 1. Star-shaped film element 
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Figure 2. 90*^. M-distribution 
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Figure 3. Orientations of demagnetizing fields due to 90° M-
distribution 
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Figure 4. 1+5" M-distriTaution 
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Figure 5. Orientations of demagnetizing fields due to ^5° M-
distribution 
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these equations "becomes an extremely complicated task itself. So it is not 

considered further. 

According to Brown (l) an arbitrary single-domain particle with uni­

form magnetization in a uniform applied field behaves like a suitably 

chosen ellipsoid of the same volume. Thus the magnetic energy of the 

star-shaped film would be independent of the orientation of the magnetiza­

tion if the latter is assumed to be uniform. In order to have different 

magnetic energies for different orientations of magnetization, it is 

necessary to assume a non-uniform distribution of magnetization throughout 

the film. 

In the numerical calculation which is used in this investigation, the 

film is divided into square partitions (40 divisions from tip to tip) in 

each of which the magnetization is assumed to be uniform. Any discon­

tinuity of orientations of magnetization between neighboring partitions 

shows up as a surface magnetic charge density on the interfaces between 

these partitions. The demagnetizing field at the center of each of the 

partitions is calculated according to this magnetic charge distribution. 

A new orientation of magnetization in each of these partitions is then 

obtained under the minimum energy conditions in presence of the demag­

netizing field and an orienting field. The final discrete and quasi-

equilibrium distribution of magnetization throughout the film is obtained 

by an iterative process. The total magnetic energy for this particular 

distribution of magnetization is simply the summation of the scalar prod­

uct of the vector magnetization and the demagnetizing field in each of 

the partitions. Note that the orienting field has been entered as one of 
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the parameters in calculating the equilibrium angles of magnetization; 

thus the biaxial anisotropy described here becomes dependent on the 

orienting field. It has been observed both theoretically and experi­

mentally that this biaxial anisotropy decreases as the magnitude of the 

applied orienting field increases. Uniformly distributed magnetization 

is a special case which is theoretically equivalent to an infinite 

orienting field. The numerical calculation yields for this case a biaxial 

anisotropy of negligible value. 

B. Review of Literature 

Biaxial anisotropy in magnetic films from different origins have been 

reported by several authors, namely single-crystal films (2), scratched 

films (3) and double-layer films (4). 

Thin single-crystal films of various ferromagnetic materials such as 

Ni, Fe, Wi-Fe and Ni-Co can be grown epitaxially by vacuum deposition onto 

heated rock salt. The deposited films assume a single-crystal structure 

with the same orientation as that of the substrate. This is due to an 

atomic interaction between the substrate and the deposited atoms. The 

biaxial anisotropy in this type of film is derived from the crystalline 

anisotropy which can be described simply in the following manner (5): 

where K and K are material dependent constants and the a., are direction c j IS 

cosines with three crystalline axes. For a thin film such that = 0 and 

with the magnetization vector lying entirely in the plane of the film, 

this energy can be reduced to 
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If $ is the angle measured from the easy axis of the film, ifc may 

further simplify as 

Ea = sin^ 24. . 

This is the biaxial anisotropy contribution to the magnetic energy 

of the film. 

The preparations and measured values of crystalline biaxial anisotropy 

of various ferromagnetic alloy films are given by Boyd (2). A study of 

magnetic switching in Ni-Fe single-crystal films has been made by Lo and 

Torok (6), in which they have compared hysteresis loops and switching 

critical curves both theoretically and experimentally. However, their 

experimental results show that due to large inhomogeneity in the anisotropy 

field in their samples, their particular films will not function as memory 

elements in the way originally proposed for an ideal biaxial film (5)-

A further extensive study of the magnetic switching in Wi-Fe single-

crystal films with the aid of the Lorentz microscopy techniques was made 

by Lo (j), in which the Lorentz micrographs show the detailed switching 

process for two types of single-crystal Ni-Fe films at different reversal 

field angles as well as a theoretical explanation of different kinds of 

switching. Experimental results show that even the nearly perfect Wi-Fe 

single-crystal films do not switch coherently as a single-domain. The 

switching processes are different for two different types of single-crystal 

films and for different reversal field orientations. So far the difficul­

ties in preparation of single^crystal film make it less attractive for 
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practical applications. 

The biaxial anisotropy of scratched films (3) is attributed to a 

shape effect resulting from fine structure of the scratches on glass sub­

strate. The orientation of the easy axis is always 4$° to the scratch. 

The magnitude of the biaxial anisotropy constant increases with increas­

ing roughness of scratches and iis proportional to the square of the 

saturation magnetization. It is also field dependent since it decreases 

with increasing measuring field. A maximum biaxial anisotropy constant 

of h.J X 10 ̂  ergs/cm^ has been observed at a measuring field of 500. Oe. 

The scratches on the substrate are a composite of rectangularly shaped, 

tiny pits laid end to end. The film deposited on such a glass substrate 

is thus an array of oriented rectangular areas with dimensions of l8 x l8 

U in area and 0.8 y in thickness and a separation from each other of 7-0 y. 

The easy axes are along the diagonals of the squares. The usual uniaxial 

anisotropy constant of the scratched film is very small compared with the 

biaxial term. • The disadvantage of inducing biaxial anisotropy in this 

way is the difficulty in control of the uniformity and reproducibility of 

the scratches which have definite effect on the magnitude of this very 

biaxial property. 

Another source of biaxial anisotropy in thin magnetic films is the 

double layer films reported by Siegle (4). These films are made of two 

successively deposited uniaxial film layers with their uniaxial easy axes 

at right angle to each other. The usual uniaxial anisotropy of these 

composite films vanishes and is replaced by a field-dependent biaxial 

anisotropy. This biaxial anisotropy vanishes in the limit of large 
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orienting fields. Theoretical analysis relates this biaxial property to 

exchange coupling between the two halves of the double-layer films. In 

this case, the biaxial anisotropy is proportional to the magnitudes of 

uniaxial anisotropies of the composite films. The important facts about 

this type of biaxial films is that the uniaxial anisotropy and thickness 

of each of the two film layers has to be kept the same. The switching 

characteristics of this type of composite film has been studied by Goto 

e;^ (8), in which they have extended the analysis to multi-layer films 

with biaxial and triaxial terms. As a special case, the influence of 

these multiaxial terms on the form of the critical switching curves are 

studied both theoretically and experimentally. The experimental results 

of an ordinary uniaxial film with a deposited thin layer of Ei-Co show a 

considerable improvement of the pulse coincidence switching characteristics. 

The biaxial anisotropy described in this thesis is different from 

all the above mentioned ones in that it is a result of the shape effect of 

the entire film element. Although it is field-dependent and vanishes in 

the limit of infinite orienting field, this does not preclude it from 

practical device applications. For finite orienting field (12 to l4 Oe) 

the large measured biaxial anisotropy term of the star-film makes it a 

potentially useful biaxial memory element. 

The star-shaped film as well as large plane of these elements can be 

easily fabricated by photo-etching techniques. The only difficulty in 

making a pure biaxial element is the fabrication of an isotropic film. 

However, in some cases, biaxial element with complex biaxial anisotropy 
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(biaxial with admixed uniaxial anisotropy) is rather desirable (5) because 

it is less disturb sensitive in memory operation. 
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II. MAGNETIZATION DISTRIBUTION IN THIN MAGNETIC FILM OF SYMMETRICAL SHAPE 

WITH NO ORIENTING FIELD 

A. Theoretical Formulation 

Maxwell's equations governing the magnetic fields of a magnetic film 

element as shown in Figure 6 can be expressed as follows: 

Internal fields: Region I 

V*B^ = 0 which gives V*M = - V*H^ 

External fields: Region II 

V X H_ = 0 

Eg(r) = 0 as r goes to infinity. 

Boundary conditions : 

"t "t = Eg ; continuity of tangential H^fields 

B^ = B^ ; continuity of normal B-fields. 

Energy relations: (9,10) 

where 

E^ = total energy, 

E = magnetic energy - ̂  /h. «M dv 
m d ' —I — 
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Figure 6. .An irregularTghaped. magnetic film 
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= anisotropy energy =  ̂ <3.̂  

Ê  ̂= exchange energy = Jc(grad M)̂  dv 

the internal field resulting from the 

volumetric and surface magnetic pole 

distributions namely - V*M and n^'M . 

H^: anisotropy field which is a function of 

the angle between M and the easy-axis of 

the firm. 

c : exchange constant. (ll) 

The equilibrium condition can be obtained by solving the stationary 

2 solution of the energy E^ subjected to the constraint that M*M = = 

constant. 

Using the Lagrange multiplier method (12)., the following equations 

are obtained: 

Consider the variation of /(E^ - X M^)«dv for an arbitrary volume dv, 

the condition for stationary solution is 

Ô /(E^ - À M^)' dv = 0,. 

or 

= /6r_'{^[-(grad H^)*M - H^*(grad M) - H^'grad M - (grad E^) «M 

2 2 + c grad (grad M) - À grad (^. }*dv = 0,. 

This equation is satisfied for arbitrary dv, if 

(.grad H ) M + K, «(grad M) + H «(grad M) + (grad H )»M 
—± —• —± —\ —a • — —a — 

- 2c. grad (grad M)^ + 2 À grad (M)^ = 0 . 
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or in index notation, 

8(S^). 3M 3M 3(E ) 

''j + 3^ + (^a^i sT + ""i 
J J J J 

3M. 9^M. 8M. 

k J k J 

where i, j, k all take the values 1, 2, 3 and repeated indices are summed 

over. 

These are the equations to be solved to give the minimum energy of 

the film element. To see the above equations are sufficient to solve the 

problem, the number of unknowns and the number of equations are compared 

as follows: 

Number of unknowns: H^, Bg, - 12 independent components, 

M - 3 independent components, A - 1 component - total of l6. 

Number of equations: 

Bg = Wo Sg 3 

9'Bg = 0 1 

V X HG 3 

% = + M) 3 

V'EL =0 : 1 
—1 

4 ° 4 3 

=2 = 1 

There is a total of I5 equations. 
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The last boundary condition*, Hg(^) = 0 at infinity makes the total 

required 16 equations. 

Thus, theoretically this problem can be solved exactly. However, 

the difficulties arise from the dependence of and upon the magneti­

zation vector M. This makes the above minimization a non-linear variation­

al problem which so far appears to be a hopelessly complicated one. To 

solve it exactly becomes almost an impossible task (13). 

B. Approximation by Discrete Magnetization 

Several ways have been used to approximate the demagnetizing fields 

in non-ellipsoidal bodies (13,14,1$). In this approximation, region I of 

the film is divided into small square partitions. Within each partition 

the magnetization M. . is assumed to be uniform, so there is no - V«M. 

Only on the four sides of the square are there magnetic free poles, i.e., 

on top and bottom sides, the pole densities are + M. , cos a. and on 
-

the right and left, + M. . sin a. . respectively, where a., are the angles 
- ijJ 1,0 iJ 

between M. . and the easy-axis of the film. On the edge of the whole film 
1, J 

element, the surface pole distributions are n^*M. .. The magnetic field 
1 5 J 

at the center of each square is then calculated according to this discrete 

distribution of poles. The calculated field together with the anisotropy 

field are substituted into the minimum energy relation to obtain a new 

equilibrium angle a. . subjected to the constraint of constant |M|. This 
1. J 

process is repeated until the final equilibrium angle is obtained. The 

numerical method of calculating a. .is shown in Appendix A. 
1 5 J 

*Dr. S. Liu, Iowa State University, Ames, Iowa. On the Electromag­
netic Fields. Private communication, 1965. 
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For a magnetic thin film with a geometrical shape that is energetically 

favorable to stay in a single domain (such as a memory element) this itera­

tive process can he applied to find the magnetization distribution. In this 

case, the accuracy of the distribution is believed to be dependent on the 

fineness of the square size. Theoretically speaking, in the limiting case, 

as the size goes to zero, this process should give a continuous distribu­

tion of M. 

With the aid of a digital computer, the calculations can be performed 

with ease. However, to start this calculation, an initial distribution of 

M has to be assumed. With a known geometry of the film a properly assumed 

distribution of M could give a faster convergence of a. .. With a symmetric 
1 5 J 

film element, the initial M can even be assumed to be uniformly distributed 

along the easy-axis. 

C. Choice of Geometric Shape of Film Element 

Since an ellipsoid is a stationary state for a magnetized body to 

have uniform distribution of M and uniform demagnetizing field, and also 

the normalized demagnetizing fields for various ellipsoidal dimensions 

have been tabulated (l6). Also, it has been theoretically proved (l) that 

an arbitrary single - domain particle in a uniform applied field behaves 

like a suitably chosen ellipsoid of the same volume, so the geometric 

shape of a planar film element having the same length and volume as an 

suitable ellipsoid has been chosen in this investigation. 

The result of transforming (see Appendix b) an ellipsoid into a 

planar film of the same length and volume as shown in Figure lU is : 
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Y = % (1 _ xW) 

where a > h >> c, are the axes of the ellipsoid, and t is the thickness 

of the planar film. Thus, the resulting geomerty of the planar film has 

the shape enclosed by two parabolas intersected at the points (+_ a,0). 

in the X-Y plane. 

D. Examples 

The demagnetizing fields and the corresponding M-distributions have 

been calculated for two film elements of the above described shape 

(li=2a=2 cm, ¥=2b=l cm, T=7rbc/2) but with different thicknesses (Film No. 

1, T=5P0. A; Film No. 2; T=20,OOOA). The size of the square partition is 

.05.cm x .05. cm X T. The initial M. . are assumed to be pointing in the 
1 5 J 

direction of the easy-axis which is along the line joining the two inter­

sections of the enclosed parabolas. 

The first iteration of a. . gives satisfactory results for Film No. 
13 J 

1 (T=500 A). The calculated demagnetizing fields and a.-.^ along the film 

element are shown in Figures T and 8. 

For Film No. 2 (T=20,000 A), agreeable results of a. . are obtained 
15 J 

for most part of the film element except regions very near the edge and 

the tips where it is understood to have the highest pole concentrations. 

Iterations up to gth time have been calculated. The M-distributions of 

the 9'fch-iteration are shown in Figure 9-

From the results of the first iteration, it is seen that minimum 

energy condition tends to diffuse the free surface poles into the film. 

This agrees with observations of M which usually follows the physical 
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Figure J. Orientations of demagnetizing fields for the 500 A film element 
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Figure 8. M-distribution for the 500 A film element 
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o 

Figure g. M-distri"bution for the 20,000 A film element 
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boundary of the film element. 

To take into account of the edge effect as having "been done for Film 

No. 2, the partitions in the tip regions are further subdivided by one 

half of their original size. Demagnetizing field at the center of each 

partition is calculated and energy minimized. After 9 such iterations, 

a. .'s along the central region begin to repeat themselves. These are 
1 5l] 

the equilibrium angles of the corresponding M. .'s under the assumed 
1 » J 

conditions. 

In the course of these calculations, the computer program has been 

essentially the same except everytime when the partitions are halved, the 

charge distribution arrays are quadrupled, so is the computing time. It 

is believed that by further sub-division of the partitions, the region of 

convergence of a. . will expand and eventually will cover the whole film 
1 5 J 

element as the subdivision process goes on. The limiting case is when 

the size of the partition approaches zero which reduces to the continuous 

case. Of course, in the latter case, the exchange energies have to be 

accounted. In the above calculations only one subdivision of the parti­

tions in the tip regions has been made, and no further subdivisions or 

iterations have been attempted. However, this calculation does show that 

the stationary distributions of M can be obtained for a two-dimensional 

case with arbitrary accuracy provided that sufficient partitions are made. 
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III. CALCULATION OF MAGNETIC ENERGY AND SHAPE INDUCED BIAXIAL ANISOTROPY 

A. Assumptions 

Consider two film elements as described in previous section are 

joined perpendicularly as shown in Figure 1. The basic idea is to obtain 

the magnetic energy difference for the average magnetizations oriented in 

the 90° (high energy state) and 4$° (low energy state) directions. In 

order to approximate the magnetic energy as close as possible, discrete 

distributions of magnetization have been used. These first order quasi-

eguilibrium discrete distributions are obtained under the minimum energy 

conditions in the presnece of demagnetizing field and the applied orient­

ing field. As a result of the discrete approximation, the M-distribution 

becomes non-uniform inside the film element as shown in Figures 2 and k .  

Also, to take account only the shape effect, the film is assumed to be 

completely isotropic. The calculated biaxial anisotropy is then obtained 

under the assumption that all the excess energy of the former over that 

of the latter can be attributed to the biaxial property of the film 

element. 

B. Demagnetizing Field and Discrete Approximation of M-Distributions 

The demagnetizing field (lO). within a region R can be expressed as: 

p r or 
g = ; -2= ay + ; -s:: as 

R r s r-^ 

where = -V*M is the effective volume pole density, = n_"M, an effective 

surface pole density on the surface S of the region R, and 11 is the outward 

unit normal from 8. To conform with the unit used in laboratory measure­

ment of magnetic field, the units used in the above equation and also from 
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now on throughout this thesis, all dimensions are in cgs units so that . 

the calculated H,'s are in units of Oe. 
—a 

In the discrete approximation of magnetization, the film, element is 

divided into small square partitions. As described in previous section, 

magnetic pole densities are distributed along the four sides of the parti­

tions. By assuming uniform magnetization within each of the partitions, 

then the demagnetizing field at the center of the partition (p,q.) can be 

expressed as: 

H = X . f ^ r. . t d& 
i.j k (r, ,)3 -"'J 

^ 3 J 

where, M. . = the magnetization in partition (i,j), 
ij J 

r. . = the distances from (p,q.) to the magnetic charges, 
1 ; J 

n^ = unit normal of the integration path A, 

d& = elemental boundary of the sides of the partitions, 

a = integration path along the four sides of each 

partition. In case of film boundary partitions, 

this path is not square, one branch of it will 

be the physical boundary of the film element. 

The summation is to sum over all the partitions enclosed by the film 

element. The numerical formulation of the demagnetizing field H is -p,q. 

shown in Appendix C, its computer program is shown in Appendix D, and the 

quasi-equilibrium distributions for the average magnetization in the 90°. 

and positions are shown in Figure 2 and Figure 4, respectively. 
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C. Demagnetizing Energy and Shape-Induced Biaxial Anisotropy 

The total energy for any discrete M-distri"butions can he expressed 

as : 

N 
E = - E (M.* H.)AV. 
m . —1 1 

1 

where, IL and AV^ are the magnetization, demagnetizing field and the 

volume of the i^^ partition, N, the total number of the partitions en­

closed by .the star-shaped film element• 

The difference of energies (denoted "by E^) "between the average 90°-

distribution and that of the 45°-distribution is thus obtained by the 

above discrete approximation. The energy difference E^ is 

^d ^90 ~ ̂ mU5 

N N 
= Z AV. _ : (M..E^)go AVi 

. N 
= AV E - (WU'Eiigo] . 

where U5 and 90 indicate the quantities for the average magnetizations 

in the ^5° and 90°. positions respectively. Since the demagnetizing field 

calculated here is normalized against the ratio of the thickness T to the 

length L of the sample, the demagnetizing field can be expressed as 

where ̂  is the normalized demagnetizing field against the ratio of T/L. 

The ratio of T/L used in this investigation is 0.0001. Also the magne­

tization vector can be written as 

M. = Ma. 
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where is the unit vector pointing in the direction of ̂  and M, the 

magnitude of ̂ . Then can be reduced to 

N 

The energy contribution due to biaxial anisotropy in a thin film in 

the presence of an applied field is: 

®k2 = F ̂2 24, 

where Kg = biaxial anisotropy constant, 

V = ÏÏ AV = total volume of the film, 

(j) = angle between M and reference easy axis. 

Equating the magnitude of this energy to that of the difference 

energy E^, the calculated biaxial anisotropy constant is obtained, 

i.e., 

^2 ~ ~V~ ~ ~NL ^ ~ 

Note that the biaxial anisotropy constant follows the definition 

given by Pugh (.'5 ), only in this case Kg is dependent on the geometrical 

shape of the film element. 

The equivalent shape-induced biaxial anisotropy field can also 
2 

be defined as : 

m 8 N 
= 2 K^/M = Z [(a.-h.)^5 - (a,-h,)g„] . 

o 
To express the thickness T in units of 1000. A and the length in mm, 

we can define a biaxial anisotropy field constant K for the star-shaped 

film as: 
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K = I t(%-Si)l,5 - '%"Èi>9ol • 

Note the h^'s are dependent on the shape factor L/W which is the 

ratio of the length to the width of the star film (see Figure l), so K 

is also a function of L/W. 

In summary, the shape induced biaxial anisotropy field can he ex­

pressed in a simple form as: 

= K T/L 
2 

where, K = K (L/W) = biaxial anisotropy field constant in Oe, and 

is a function of L/W, 

L = length of film element in mm, 

W = width of film element in mm, 
o 

T = thickness of film in units of 1000 A. 

For the case of L/W = 10/3, which is used in this investigation, 

K = 1.12 Oe. Based on the above formula, the film size can be made as 

small as practical for a desired . 
2 
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IV. EXPERIMENTAL RESULTS 

A. Theoretical Foundation 

The energy equation of a thin magnetic film with mixed uniaxial and 

biaxial anisotropies under applied field is: 

E = -MH^cos((j)-0) + MH^sin(<j)-0 ) + K^sin^(0+ip) + ̂  

where 0 and ^ are angles "between the easy axis and the magnetization M 

and the applied field H, and ijj indicates that the "biaxial easy axes are 

not necessarily parallel to the uniaxial easy axis. Using previously 

defined anisotropy fields, the torque equation can "be expressed as: 

T = = -MH^sin((j)-0) - MH^cos( (j)-0 ) + ̂  MH^sin2(0+ijj ) + ̂  MH^^sin 40. 

Thus, from the torque curve, the uniaxial and biaxial anisotropies can 

be determined. 

In actual torque measurement, the equilibrium position of magnetiza­

tion is to be found. This is to achieve a torque balance. From the above 

torque equation, assuming the applied field is in the y-direction, this 

is equivalent to 

T - I# = 0 ' 

By rearranging terms and considering the case, jp = 0,.this gives: 

m cos(.<|)-8) = |-MH^sin20.+ J'MH^sinl+0. 

This equation represents the balance of torque. The term on the 

left hand side is the torque due to the externally applied field. The 

first term on the right hand side is a torque which is a material property, 

the so-called uniaxial anisotropy. The second term is a torque which, in 
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this case, is induced by the shape of the star film. 

B. Measurement Techniques 

There are two most common devices of measuring the above mentioned 

torque. The one which achieves the torque balance by electromechanical 

means is called an automatic balancing torque magnetometer (IT). The 

other is an electronic torque magnetometer which was suggested by 

Dr. T. R. Long of the Bell Telephone Laboratories. 

In this investigation, a modified electronic torque magnetometer has 

been used. A schematic diagram which depicts the various field relations 

is shown in Figure 10. The operation of this torque balance can be 

described as follows: a film sample is placed horizontally in the center 

of a pair of crossed Helmholtz coils. One set of the coils supplies the 

orienting field in the x-direction, the other gives the restoring field 

in the y-direction. During the measurement a sufficient orienting 

field is maintained to insure the film sample staying in a single domain 

state. An oscillating tickle field (E^ : 1000. cps) which is small in 

amplitude compared with that of is also applied in the same direction. 

The measurement starts with one of the easy axes of the sample aligned 

in the x-direction so there is no output from a figure-8 sense coil. 

This sense coil which is placed directly underneath the film sample with 

its axis in the y-direction is designed to pick up any flux changes due 

to the variations of the magnetization of the sample. When the easy axis 

of the sample is physically rotated away from the x-direction, as is 

shown in Figure lO , the new equilibrium position of M gives rise to a 

y-component. This y-component of M under the influence of the tickle 
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Figure 10. Field relations for the electronic torque magnetometer 
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field produces an output in the sense coil. The restoring field is 

then applied, which exerts a torque to restore M back to the x-direction, 

and the amplitude of is adjusted until there is no output from the 

sense coil. This can be described by the torque equation as: 

BE 
? = 98 = 0 

(j)=0 

or 

MHr = |- MH^^sinSe + J- MH^^sinUO. 

It is this restoring field which is proportional to the anisotropy torque, 

and its amplitude versing the sample physical rotation angle gives the 

torque curve. 

C. Preparation of Films 

In order to show a pronounced biaxial term in the star-shaped film, 

the uniaxial anisotropy of the film has to be as small as possible. The 

anisotropy of a vacuum evaporated film is strongly dependent on the sub­

strate temperatui-e during the deposition (l8). The optimum temperature 

for both low and is about 325°C. In the preparation of the film 

sheets, the substrates were baked around 300.~ 340°C for at least 4$ 

minutes before the evaporation of Ni-Fe. The H 's of the evaporated films 
1 

obtained this way were all within a satisfactory range of 2.0 ~ 2.6 Oe. 
o 

and with thicknesses between 2,000. 6,000. A. 

Arrays of star-shaped elements were photo-etched from these film 

sheets with the uniaxial axis aligned in the 4$° direction as shown in 

Figure 1. Two different sizes (i)-mm and 2mm) of the star films were pre­

pared. The larger sized element was then cut from the array and was 
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measured singly. The smaller ones, due to their low level flux output, 

were cut in a 3 x 3 array and measured as a gross effect of nine elements. 

D. Measured Results 

The measured torque curves are shown in Figures 11 and 12.. Note the 

vertical scale is in units of ma which can be easily converted in Oe, in 

this case, by multiplying a factor of O.OI6. These curves are then 

Fourier analyzed with their Fourier components shown in Table 1. As is 

shown by the Fourier components of each of these samples, the only sig­

nificant terms are the second and fourth harmonics which are the con­

tributions of uniaxial and biaxial anisotrophies respectively. All the 

rest of the terms are of negligible amplitude and are considered to have 

been introduced by measurement error and instrument drift. 

The comparison of the calculated IL 's with those of measured are 
2 

listed in Table 2. An orienting field of lU Oe has been used for all 

of the calculated L 's and for those of measured ones several different 
2 

values of has been used as shown in the table. The accuracy of the 

calculated 's is limited by the technique used to measure the thick-
2 . 

ness of the sample. It is estimated that the measured values of thick­

ness are within + 10%.of their true values. 
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Figure 11. Measured torque curves 
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Table 1. Fourier components of measured torque curves 

Sample n 0 1 2 3 k  5 6 7 8 9 10 

cosnO -7.5 2.5 1.5 0.1 16.8 -0.2 -3.4 -0.2 1.5 -1.2 0.3 
1 

sinnG 0.0 0.7 96.1 -1.3 4.0 -1.7 -3.6 -0.1 -0.4 0.3 1.2 "L ' 

cosn6 k .o  -1.3 6.3 1.0 . -1.8 -1.3 -1.5 -0.7 -0.6 -0.0 0.3 ' 
2 

sinnS 0.0 -0.9 77.0 -0.1 31.9 -4.1 -1.4 -2.5 2.1 -2.4 -2.8 

cosn0 -4.3 -1.8 -4.5 -0.3 14.8 -1.5 +2.6 -0.4 1.8 -0.8 -2.1 
3 

sinn0 0.0 -4.1 77.5 -1.9 37.0 -3.8 -1.4 -1.8 0.2 -1.4 -1.8 

) ,  

cosnO 4.0 -0.1 2.6 -0.3 -3.3 0.0 —0.3 -0.0 -1.0 0.3 1.9 

sinn0 0.0 1.1 67.0 -1.1 17.8 -1.8 -5.7 0.0 6.7 -1.4 -1.6 

cosnG 1.3 -1.0 -9.7 0.2 15.1 -0.4 1.1 -0.2 1.4 -0.5 -0.9 
5 

sinnG 0.0 2.2 58.8 -0.1 24.9 -1.7 -2.5 -1.6 1.5 -1.5 -1.3 

cosnG 7.1 -2.U -107.3 3.5 30.5 -0.3 7.8 -0.6 4.3 -1.3 -4.5 
o 

sinnG 0.0 1.1 71.2 -1.2 2T.1 -3.5 -22.6 0.4 -1.8 -0.2 -3.1 
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Table 2. Comparison of measured and calculated 's 
2 

Sample Size (mm^) 
L X ¥ 

O 
Thickness (A) H^(Oe) (Oe) 

1 % (Oe) 
meas. calc.* 

1 2 X 0.6 i8oo 6.6 3.08 1.11 1.01 

2 2 X 0.6 2900. 6.6 2.46 2.08 1.68 

3 2x0.6 3300. . 6.6 2.48 2.59 1.75 

U 4 X 1.2 3300 12.0 2.14 l.l4 0.92 

5 k X 1.2 5700. , 9.0 . 2.07 1.88 1.59 

6 4 X 1.2 , 8000. 9.0 3.84 2.61 2.23 

*The error in the calculated value is estimated to be within HH 10%.  
which is introduced by the thickness measurement of the sample. 
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V. DISCUSSION 

In this investigation, biaxial anisotropy arising from an appropriate­

ly shaped tiain magnetic film, has been experimentally measured. A mathe­

matical model based strictly on the shape dependent demagnetizing fields 

has been derived to estimate this shape induced biaxial term. The shape 

used in this investigation to induce the biaxial term is a four pointed 

star. Its biaxial contributions were also measured in a more direct 

fashion by means of a modified torque magnetometer technique and compared 

with the above calculated values. The comparisons were in close agreement 

for samples with various thicknesses and dimensions as listed in Table 2. 

It is seen from this table that for the star-shaped film under a constant 

orienting field the measured biaxial anisotropy field increases as the 
2 . 

thickness of the film is increased. Since the demagnetizing field is 

directly proportional to the thickness of the film, this measured result 

further substantiates the assumption that the biaxial anisotropy of the 

star-shaped film is derived from the demagnetizing energy of the film 

element. Also the measured values of H 's are all higher than those of 
2 . 

the corresponding calculated ones as indicated in the table. This is 

because H is field-dependent and that all of the values of the orienting 
2 . 

field used in the measurements are considerably lower than the one (ih Oe) 

used for all of the calculated ones. 

According to Brown's theorem (l) that the magnetic energy for the 

star film will be independent of the orientation of the magnetization if 

the latter is assumed to be uniform. For finite orienting field the 

uniform magnetization can not be established due to demagnetizing field 



www.manaraa.com

•which varies "both in magnitude and direction from point to point inside 

the film. Instead the magnetization distributes itself in such a way that 

in presence of the orienting field and the demagnetizing field the total 

energy of the film is minimized. This minimum energy condition gives a 

result of non-uniform distribution of magnetization in the star film. To 

simulate this non-uniform distribution of magnetization, the star film is 

divided into small square partitions and a discrete distribution of magne­

tization is assumed. The demagnetizing field at the center of each parti­

tion is calculated according to an initial distribution of magnetization 

and then the eq.uilibrium angle of magnetization vector is calculated under 

the minimum energy condition in presence of this demagnetizing field and 

an externally applied orienting field. Each time a new distribution mag­

netization is obtained and so is a new set of demagnetizing fields. The 

final quasi-equilibrium non-uniform distribution of magnetization is ob­

tained by iteration process. 

The 90° and distributions of magnetization (see Figures 2 and U) 

are respectively corresponding to the orienting field applied in the 

directions of 90°. and h3° measured from the film axis as shown in Figure 1. 

The calculated results show that the 90°-distribution gives the highest 

energy and the U5°-distribution, the lowest energy. It is the energy 

difference between these two distributions of magnetization which gives 

the biaxial anisotropy of the star film. A numerical calculation was 

worked out to simulate the uniform magnetization case (which was equiva­

lent to an infinite orienting field). The resulting biaxial anisotropy 

field was 0.05. Oe (zero in the ideal case) as compared with 1.12 Oe for 
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that of the non-uiniform one. 

The potential usefulness of this shape-induced biaxial anisotropy 

lies in the fact that in practice the applied field is always finite in 

magnitude. The actual distribution of magnetization in the film is there­

fore always non-uniform. Thus the field dependence of the biaxial 

anisotropy does not preclude its use for device applications. 

The prerequisite of making a pure biaxial element by shape-effect 

techniques is to start with an isotropic film. The fabrication of a 

purely isotropic film has been found to be a non-trivial task. In this 

investigation, the star-shaped elements were etched from uniaxial films. 

As a result of the inherent uniaxial anisotropy, they all possessed mixed 

uniaxial and biaxial properties which were shown clearly in the measured 

torque curves and their Fourier components. However, in memory applica­

tions, a complex biaxial (biaxial with admixed uniaxial anisotropy) film 

is desirable for the reason that it is less likely to be disturb sensitive 

than a film with pure biaxial anisotropy (5). With the formula derived 

in Section III, the proportion of this admixture can be closely controlled 

by appropriately chosen values of , thickness, and length (i.e. tip to 
1 

tip dimension) of the star-shaped element. 

In the numerical calculation of the equilibrium positions for the 

discrete ^^distributions, usually the M's in the central regions of the 

film element converge to their final positions within 2 to 3 iterations. 

The M's of the partitions in the tip regions and along most boundary 

regions always oscillate back and forth. In principle the edge effect 

probably can be solved by further subdivision of the partitions in these 
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regions progressively as they approach the edge of the film. This 

techniçLue -would approach the continuous distribution as a limiting ease. 

However, for an engineering problem with limited budget, the partitions 

are divided as small as practical and the contributions due to these 

boundary partitions can be even neglected as it has been done in this 

inve stigation. 
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VIII. APPENDIX A 

EQUILIBRIUM ANGLES OF DISCRETE MAGNETIZATION 

The energy density of a thin film is: 

E = - ̂  MH^cos(0-(j)) + MH^sin^G, 

where = demagnetizing field. 

Eg. = uniaxial anisotropy field, 

0 = angle between ̂  and M, 

(j) = angle "between and 

The eq^uilihrium position of the magnetization stays where there is a 

torque balance, i.e., 

3F 1 
— = —[MH^sin(0-(|)) ] + 2 MH^sin© cos0 = 0 . 

or 

(H^cos(j))sin0 - (H^sin(j))cos0 + 4Hg.sin0 cos0 = 0 . 

Choose x-axis in the direction of then the demagnetizing field 

can be expressed in component forms, i.e., 

H sin0 - H COS0 + 4lL_sin0 cosS = 0. 
X y TC 

A computer program designed to solve this equilibrium angle 0 is of 

an iterative type. The general idea of this program is described as fol­

lows: a small increment of angle as a perturbation is applied to the 

torque balance equation. It is then checked against a predetermined 

deviation from the equilibrium angle 0. When the absolute value of this 

increment falls below the desired tolerance, the iterations are terminated. 

Mathematically, this is done by letting A0 be the increment, and 
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substituting into the torque balance equation, i.e., 

H^sin(0+A0) - H^cos(0+A0) + 4Hj^sin(0+A0 )cos(0+A0 ) = 0 ,. 

For small angle A0, we have sinA0 = A0, cosA0 = 1, and using typical 

value of (3 Oe), this becomes 

H^(sin0 + A0cos6) - H^(cos0 - A0sin0) + 12(sin0 + A0cos0)(cos0 - A0sin0) = 0. 

Solving for A0, we have 

H sin0 - H COS0 + 12sin0cos0 
A0 = -2 Z 

(I2sin0 - H^)sin0 - (I2cos0 + H^)cos0 

A flow-chart illustrating the computer calculation of 0 is shown in 

Figure 13. It can be interpreted in the following manner: 

The iteration starts initially with 0=0 for every set of input data 

H and H , and calculates a A0. Then the absolute value of IA0I is com-
X y ' ' 

pared with a pre-determined deviation which is, in this case, one millionth 

of 0 (O.000001.X 0). If IA0I is greater than this deviation, it is then 

added algebraically to the currently running 0 and fed back to the calcu­

lation loop. This iterative process goes on until the value of |A0| is 

smaller or equal to the deviation. However, to prevent the computer from 

looping in a time consuming divergent case, a counter (I, in the flow­

chart) is included to count the number of iterations. When the number of 

iterations exceeds the preset number (in this case, it is set at 50), it 

will branch out of the iteration loop and print out "NO COFVERG-EÏÏCE" , and 

then proceeds to take the next set of data. When the last set of data is 

sensed, the calculation is terminated. 

This iterative process has found to be very effective. In most of 
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Figure 13. Flow chart for the calculations of equilibrium angles of 
distribution 
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the cases the convergence of 9 takes only 2 to 5 iterations. It also 

eliminates the tedious and laborious procedures of solving the higher 

order (4th, in this case) equation algebraically. 
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IX. APPENDIX B 

ELLIPSOIDAL TO PLAJTAE FILM TRANSFORMATION 

This is to transform a 3-dimensional ellipsoid into a planar geometry 

which has the same length and same volume as these of the ellipsoid (see 

Figure l4). For the ellipsoid, we have 

2 2 2 

a b c  

where a > "b >> c are the major axes in x and y directions, and minor axis 

in z direction respectively. 

The cross-sectional area perpendicular to the x-axis in y-z plane 

is an ellipse with the equation 

he a 

Its major and minor axes are: 

•b(y) = b /1 - ̂  = y 
2 
a 

I c(y) = c I 1 - ̂  = 
a 

and its area is: 

2 
Ag = 7rb(y)c(y) = . 

Using X-Y coordinates for the corresponding planar film, we have the cross-

sectional area perpendicular to the x-axis with thickness t, i.e., 

Ap = 2tY 

Equating Ae = Ap, we have 



www.manaraa.com

50 

Y 

Figure lU. Ellipsoidal to planar film transformation 
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y2 = 2tY . 

In the x-y plane, the ellipse is 

a b 

and note that x = X, thus the transformed planar geometry in X-Y planes 

is 

Y =  =^ (1 -4 )  • 
a 
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X. APPENDIX C 

NUMERICAL FORMULATION OF DEMAGNETIZING FIELD IN STAR-SHAPED FILM 

The basic formula of calculating the demagnetizing field in a magnetic 

film of constant thickness is shown in Section III, i.e., 

^ 3 J 

Let the surface charge density "be denoted by a. . = M. . «n , then the 
1, J 1, J & 

main task of this program is to obtain these various surface charge 

densities and evaluate the corresponding integrals throughout the film. 

When the film is divided into square partitions, there are three 

different types of surfaces charges, namely, the charges on the vertical 

and horizontal faces of the interior partitions, and those on the physical 

boundary of the film. 

For the partitions in the interior region of the film, let the mag­

netization of partition p(i,j) and those of its nearest neighboring parti­

tions p(i+l, j) and p(i, j+l) be expressed in their component forms: 

=M^(i cos j + 1 sin 

= "o'i 

° "o<i i "i.j+l' 

•where M is the magnitude of M, a. a., ̂ . and a. . are the angles 
o - i,J 1+1,0 i,J+l 

of M..^ . and M. . respectively, i and j are the unit vectors in the 
—1+1,J -TLjJ+l J' » _ iL 

X and y directions. Note, the convention of indices used here indicates 

that p(i+l,j) is to the right of p(i,j), and p(i,j+l), on top of p(i,j). 

On the vertical interface of p(i,j) and p(i+l,j), with their surface 
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•unit normals n. = i and n..^ = -i, the vertical surface charge density is; 
—a. — —1+1. 

= H^(cos - cos 

Call C(i,j) the vertical cosine charge array since it includes all 

the vertical interface charge densities of all the partitions throughout 

the interior region of the film. 

Similarly, on the horizontal interfaces, a horizontal sine charge 

array can be expressed as: 

S(i,j) = M (sin a. . - sin a. . ) 
O 1 3 J ^ 5 J 

The demagnetizing field at point (p,q.) due to the cosine array of charges 

is: 

1 5 J 

where 

r . . = .(p-i)i + (q-j-y)l , 
J-j J 

(r. .= (p-i)^ + (g-j-y)^ , 
J- 5 J 

and for the sine array of charges, 

^ 3 J 

"Where 

r. = (p-i-x)i + ( q-j )l 
X jJ 

(r = (p-i-x)^ + (q-j)^ . 
-i- 5 J 
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All these integrals are of the standard forms which are evaluated in 

most of integrals tables. The summations cover all the interior charge 

arrays. 

Next, calculate the demagnetizing field due to charge distributions 

on the physical boundary of the star film. This boundary can be divided 

into eight symmetric branches, and they all have the same general func­

tional form as derived in Appendix B. In the following the demagnetizing 

field due to the charges on one of the branches in the first quadrant is 

derived. 

Using the above derived function, i.e.. 

where a is a shape factor determined by the width to length ratio (in this 

investigation, a = 1/4) of the star film, and a = 1/2 L, one half of the 

film length as shown in Figure 1. 

X =  a( l  -  y^ /a^)  

Let 

0 
a 

then the unit normal out of this boundary surface is: 

The elemental length along this boundary is: 
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So, the elemental charge is: 

S = at 

= M t(cos a . + ̂  y sin a ) dy 
O D 5 J  D 9 J  

where a .'s are the angles of magnetizations in the partial partitions 
0, J 

which form the edge of the film. The demagnetizing field at point (p,q.) 

due to the charges on these edge surfaces is; 

1 IV . p 
= M t E / (cos a . + -^ y sin a .) dy 

°  j  o  (r .  , )3  t 'J  
D 5 J 

where 

= ,(p-x)i + (q-j-y)l 

= [p - cx(i-y^/a^)]i + (a-j-y)i • 

The summation is used because of discrete approximation of M. 

The contributions to the field due to the rest of the branches are 

essentially of the same form, provided that appropriate substitutions of 

coordinates are made in calculating the various unit normals and the 

distances to the charges, ̂  .'s. 
D , J 

The above integrals can be evaluated by a numerical integration 

technique called the Simpson's Rules (which is usually a built-in sub­

routine in the compilers of most computer systems), or by piecewise 

linearization of the film boundary. Also, special treatment is required 

for these non-square boundary partitions to insure conservation of charges. 

In each of these partitions with one of its four sides forming the physical 
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boundary of the film, the others are then of non-integral lengths unlike 

those of a regular interior partition. In the numerical calculation of 

demagnetizing fields, these irregular lengths are stored in an array, and 

their contributions are calculated in a separate loop. 

The locations of the field point (p,q) inside the film can be ob­

tained in several ways, namely, (a) by direct calculation of maximum q for 

each increment of p according to the functional relations of the boundary 

curve, (b) by storing (p,q) in a two dimensional position array, and (c) 

by storing q in a one dimensional array as a function of increment in p, 

or vice versa. The last method is found to be the most convenient and 

time-saving one for the calculations used in this investigation. 

The construction of the computer program to solve the demagnetizing 

fields in the star-shaped film can be described by the simplified flow­

chart as shown in Figure 15- The symbols used are as follows: 

L: maximum number of partitions, 

M: point of intersection, 

: array of irregular lengths of non-square boundary partitions, 

: cosine angles of K .in the boundary partitions (b,j), 

; sine angles of M_ . in the boundary partitions (b,j), 

: cosine array of charges of interior partitions, 

: sine array of charges of interior partitions, 

: array of field points (p,q), 

: the x-component of fields due to BL(J), 

: the y-component of fields due to BL(J), 

: the x-component of fields due to C(l,J), 

BL(J) 

BC(J) 

BS(J) 

C(I,J) 

8(1,J) 

W(I) 

XI 

Y1 

X2 
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I Read UM. BaXMa).C(i.j). Bca),  BSd) 

11 = 1 

P=II--5 

HEm 

Compute 
Surn^ 

X4., Y4 

HX=W+X2+X3tX4 

HY=Yl+V2+y3+Y4 

, I .N=N(n) 

OBHl I H°jj-5 
Output 
HX,HY 

Compute 
Sum 

X2,X3,Y2,y3 

Iniiialize 
yi.Yi 

Jnitialize 
X4,Y4 

I-I+l 

j«r+i 

Compute 

XI, Y1 

Figure 15» Flow-chart for calculations of demagnetizing fields for the 
star-shaped film element 
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Y2 : the y-component of fields due to C(l,j), 

X3 : the x-component of fields due to S(l,J), 

Y3 : the y-component of fields due to 8(1,J), 

: the x-component of fields due to curved boundary, 

Y4 : the y-component of fields due to curved boundary, 

HX : the x-component of total field at (p,q), 

HY : the y-component of total field at (p,q). 
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XI. APPENDIX D 

COMPUTER PROGRAM FOR DEMAGNETIZING FIELDS IN STAR-SHAPED FILM 

This computer program is in FORTRAN IV language. 
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/JOB 10303 FRED LEE 4 MIN 
DIMENSION U1(20),U2(20),F(20),T(20), 

132(21,21) ,QHI(2G) ,QHJ (20), AH 20), BI(2C), 
151(2 0,20),CI(20),01(20)CCI(20),CC2(20) 
REAL MM,K1 
INTEGER U1,U2 
BN(B,C,D,E)=((0.1*C+B)*E-B*D)/(D*E) 
CN(A,B,D,E)=2.*(E-(0.C25*B+A)/D) 
FUN(A,B,C)=2./(4.*C*A-B*B) 
ABB(A,B,C)=SQRT(A+0.05»B+0.0025*C) 
READ (1,5) (UK I),1 = 1,20) 
READ (1,5) (U2(I),1=1,19) 

5 FORMAT (2013) 
READ (1,6) (F(I),T(I),1=6,20) 

6 FORMAT (2F12.7) 
READ (1,77) APF 

77 FORMAT (F5.1) 
READ (1,2) L,M 

2 FORMAT (213) 
MM=-M*0.05 
Yl=-0.25+0.25*MM*MM 
Y3=Yl-0.05 
YMM=4.*MM 
Y411=4.*Y1 
Y433=4.*Y3 
READ (1,99) AXX,AYY,BXX,BYY,CXX,CYY 

99 FORMAT (6F12.7) 
AXY=AXX+AYY 
BXY=BXX+3YY 
CXY=CXX+CYY 
DXY=AXY 
EXY=BXY 
FXY=CXY 
WRITE (3,3) L 

3 FORMAT (aO NO» OF ITERATION =3,13) 
DO 8 1=1,18 
N=U1(I) 
READ (1,7) (CCI(I,J),J=1,N) 

7 FORMAT (8F10.7) 
8 CONTINUE 

DO 9 J=l,18 
N=U1(J) 
READ (1,7) (SKI,J) ,1 = 1,N) 

9 CONTINUE 
READ (1,6) (QHI(I),QHJ(I),I=6,20) 
READ (1,6) (AI(K),BI(K),K=M,19) 
READ (1,6) (CI(K),DI(K),K=M,19) 
DO 500 11=1,19 
P=-0.5+II 
P11=0.05*P 
KV=U2(II ) 
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DO 500 JJ=1,KV 
Q=-0 «S+JJ 
Q11=0.05*Q 
QQ=Q11»Q11 

C HORIZONTAL BOUNDARY ELEMENTS 
SHX=C. 
SHY=0. 
DO 100 J=6,2 0 
QI1=QHI(J) 
QJ1=QHJ{J) 
TJ=T(J)«0.05 
FJ=F(J)*0.05 
Q1=0.C5*(Q-J+1) 
Q2=Q1»Q1 
Q3=(Q+J-l)»0.05 
04=Q3*Q3 
P1=(P-J+1)*0.05 
P2=P1*P1 
P3=(P+J-l)*0.05 
P4=P3*P3 
QD1=1.0/Q1 
QD3=1.0/Q3 
PD1=1.0/P1 
PD3=1.0/P3 
QF1=Q11-FJ 
QT1=Q11-TJ 
QM1=Q1I+TJ 
QM3=Q11+FJ 
PF1=P11-FJ 
PT1=P11-TJ 
PM1=P11+TJ 
PM3=P11+FJ 
PF2=PF1«PF1 
PT2=PT1*PT1 
PM2=PM1*PM1 
PM4=PM3*PM3 
QM2=CM1*QM1 
0M4=QM3*QM3 
«T2=QT1*QTI 
QF2=QF1*QF1 
DFP1=1./SQRT(Q2+PF2) 
DTP1=1./SQRT(Q2+PT2) 
DTM1=1./SQRT(Q2+PM2) 
DTM2=1./SQRT(Q4+PM2) 
DFM1=1./SORT(Q2+PM4) 
DFM2=1./SQRT(Q4+PN4) 
DPFl=l./SQRT(P2+QF2) 
DPF2=1./SQRT{P4+QF2) 
DPT1=1./SQRT(P2+QT2) 
DPT2=1./SQRT(P4+QT2) 
DMT1=1./SQRT(P4+QM2) 
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DMT2=1./S«RT(P2+QM2) 
DMF1=1./SQRT(P4+QM4) 
DMF2=1./SQRT(P2+QM4) 
DFT2=1./SQRT(Q4+PT2) 
DFP2=1./SQRT(Q4+PF2) 
HHX1=DFP1-DTP1 
HHX2=DTM1-DFM1 
HHX3=DTK2-DFM2 
HHX4=DFP2-DFT2 
HHX5=((Q11-TJ)*DPT1-(Q11-FJ)*DPF1)*PD1 
HHX6=((Q11-TJ)«DPT2-(C11-FJ)*DPF2)*PD3 
HHX7=((Q11+FJ)*DMF1-(Q11+TJ)*DMT1)*PD3 
HHX8={(011+FJ)*DMF2-(Cll+TJ)*DMT2)*PD1 
HHY1=((P11-TJ)*DTP1-ÎP11-FJ)*DFP1)*0D1 
HHY2=((P11+FJ}»DFM1-(P11+TJ)»DTM1)»QD1 
HHY3=((P11+FJ)*DFM2-(P11+TJ)*DTM2)*QD3 
HHY4=((Pll-TJ)*DFT2-(P11-FJ)*DFP2)*0D3 
HHY5=DPF1-DPT1 
HHY6=DPF2-DPT2 
HHY7=DMF1-DMT1 
HHY8=DMT2-DMF2 
H1X=QI1*IHHX1-HHX3+HHX2-HHX4) 
H2X=QJ1*(HHX5-HHX7+HHX6-HHX8) 
HlY=QIl»(HY15-HY37+HY26-HY4g) 
H2Y=QJ1*(HY15-HY37+HY26-HY48) 
SHX=SHX+H1X+H2X 
SHY=SHY+H1Y+H2Y 

100 CONTINUE 
C FIELDS DUE TO CORNER ELEMENTS 

PP1=P11+MM+Y1 
PP3=P11-MM-Y1 
PP2=PP1*PP1 
PP4=PP3*PP3 
A1=PP2+QQ 
A2=PP4+QQ 
B1=2.»(PP1-Q11) 
R2=-2.*{PP3+Q11) 
B3=2.*(PP3-Q11) 
B4=-2,*(PP1+Q11) 
CDl=l./(a.»Al-BI*Bl) 
CD2=1./(8.*A2-B2*B2) 
CD3=l./{8.*A2-B3*B3) 
CD4=l./(8,*A1-B4*B4) 
T1=2.*A1 
T2=2.*A? 
APl=PPI+.25 
AP2=AP1*AP1 
AP3=PP1-MM 
AP4=AP3*AP3 
AP5=PP1+Y1 
AP6=AP5*AP5 
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AP7=PP1-Y1 
AP8=AP7*AP7 
AP9=PP1-Y3 
P10=AP9«AP9 
P15=PP3+Y1 
P16=P15*P15 
P17=PP3+Y3 
P18=P17»P17 
P19=PP3-0.25 
P20=P19*P19 
P21=PPl-0.25 
P22=P21*P21 
P23=PP3+MM 
P24=P23«P23 
P25=PP3-Y3 
P26=P25*P25 
AQl=Qll-0.25 
AQ2=AQ1*A01 
AQ3=Q11+MM 
AQ4=AQ3«AQ3 
AQ5=Q11-Y1 
AQ6=AQ5*AQ5 
AQ7=Q11+Y1 
AQB=AQ7*A07 
AQ9=Q11+Y3 
Q10=AQ9*AQ9 
Q13=Q11-Y3 
Q14=Q13*Q13 
Q19=Qll+0.25 
Q20=019*Q19 
Q23=Q11-MM 
Q24=Q23»Q23 
SQ11=1./SORT{AP2+AQ2) 
SQ12=1./SQRT(AP8+AQ8) 
SQ13=I./SQRT(P10+Q10) 
SQ14=1./SQRT(AP4+AQ4) 
SQ21=lc/S0RT(P18+Q14) 
SQ22=1./SQRT(P24+Q24) 
SQ23=1./SQRT(P20+C120) 
SQ24=1./SQRT(P16+AQ6) 
SQ31=1./SQRT{P20+AQ2) 
SQ32=1./SQRT{P16+AQ8) 
SQ33=1./SQRTCP24+AQ4) 
SQ34=1./SQRT{P18+Q10) 
SQ41=1,/SQRT{P10+Q14) 
SQ42=1./SQRT(AP4+Q24) 
SQ43=1./SORT(AP8+AQ6) 
SQ44=1./SQRT{AP2+Q20) 
CA11=B1+1. 
CA12=B1-Y411 
CA13=B1-Y433 
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CA14=B1-YMM 
CA21=B3+Y433 
CA22=B3+YMM 
CA23=B3-1. 
CA24=83+Y411 
CA31=T1+B1*.25 
CA32=T1-B1*Y1 
CA33=Ti-Bl*Y3 
CA34=T1-B1*MM 
CA41=T2+B3»Y3 
CA42=T2+B3*MM 
CA43=T2-B3*.25 
CA44=T2+B3*Y1 
CA51=B2+1. 
CA52=B2-Y411 
CA53=B2-YMM 
CA54=B2-Y433 
CA61=B4+Y433 
CA62=B4+YMM 
CA63=B4+Y411 
CA64=B4-1. 
CA71=T2+B2*.25 
CA72=T2-B2*Y1 
CA73=T2-B2*MM 
CA74=T2-B2»Y3 
CA31=T1+B4*Y3 
CA82=T1+B4«MM 
CA83=T1+34*Y1 
CA84=Tl-B4*-25 
CY11=CA11*SQ11-CA12*SQ12 
CY13=CA13*SQ13-CA11*SQ11 
CY15=CA14*SQ14-CA13*SQ13 
CY31=CA21*SQ21-CA22*SQ22 
CY33=CA23*SQ23-CA21*SQ21 
CY35=CA24*SQ24-CA23*SQ23 
CY12=CA31*SQ11~CA32*SQ12 
CY14=CA33*SQ13-CA31*SQ11 
CY16=CA34*SQ14-CA33*SQ13 
CY32=CA41*SQ21-CA42*SQ22 
CY34=CA43*SQ23-CA41*SQ21 
CY36=CA44*SQ24-CA43*SQ23 
CY21=CA51*SQ31-CA52*SQ32 
CY23=CA54*SQ34-CA51*SQ31 
CY25=CA53*SG33-CA54*S034 
CY22=CA71*SQ31-CA72*SQ32 
CY24=CA74*SQ34-CA71*S031 
CY26=CA73*S033-CA74*SQ34 
CY41=CA61*S041-CA62*SQ42 
CY43=CA64»SQ44-CA61*SQ4i 
CY45=CA63*SG43-CA64*S044 
CY42=CA81*SQ41-CA82*SQ42 
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CY44=CA84*SQ44-CA81*SQ41 
CY46=CA83*S043-CA84*SQ44 
IF (8XY) 20,21,20 
X12=BXY*(PP1»CY13-CY14) 
X22=EXY»(PP3*CY23+CY24) 
X32=-BXY*(PP3*CY33-CY34) 
X42=-EXY*(PP1*CY43+CY44) 
Y12=BXY*(Q11*CY13+CY14) 
Y22=EXY*(011*CY23+CY24) 
Y32=-BXY*(Q11*CY33+CY34) 
Y42=-EXY*(Q11*CY43+CY44) 
X11=AXY*(PP1*CY11-CY12) 
X13=CXY*(PP1*CY15-CY16) 
X21=DXY*(PP3*CY21+CY22) 
X23=FXY*(PP3*CY25+CY26) 
X31=-CXY*(PP3*CY31-CY32) 
X33=-AXY*(PP3*CY35-CY36) 
X41=-FXY*(PP1*CY41+CY42) 
X43=-DXY*(PP1*CY45+CY46) 
Y11=AXY*{Q11*CY11+CY12) 
Y13=CXY*(Q11«CY15+CY16) 
Y21=DXY»(Q11*CY21+CY12) 
Y23=FXY*(Q11*CY25+CY16) 
Y31=-CXY*(Q11*CY31+CY32) 
Y33=-AXY*(Q11*CY35+CY36) 
Y41=-FXY*(Q11»CY41+CY42) 
Y43=-DXY*(Q11*CY45+CY46) 
Xl=(X11+X12+X13)*CD1 
X2=(X21+X22+X23)»CD2 
X3=(X31+X32+X33)*CD3 
X4=(X41+X42+X43)*CD4 
YY1=(Y11+Y12+Y13)»CD1 
YY2=(Y21+Y22+Y23)*CD2 
YY3=(Y31+Y32+Y33)*CD3 
YY4=(Y41+Y42+Y43)*CD4 
HBX=2.*(X1+X2+X3+X4) 
HBY=(YY1+YY2+YY3+YY4)»2. 
FIELDS DUE TO BOUNDARY 
SUM1=0. 
SUM2=0. 
DO 200 K=M,19 
K1=0.05*K 
F0=0.25-0.25*K1»K1 
01=0,025*K+0.0125 
02=01*01 
P1=P11-F0 
P2=P1*P1 
P3=P11+FD 
P4=P3«P3 
P5=P11-K1 
P6=P5*P5 
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P8=P7*P7 
Q1=Q11-K1 
Q2=Q1*Q1 
03=Q11+K1 
Q4=Q3*Q3 
Q5=Q11-F0 
06=05*05 
Q7=Q11+F0 
C8=Q7<Q7 
A1=P2+Q2 
A2=P4+Q2 
A3=P4+Q4 
A4=P2+Q4 
A5=P6+Q6 
A6=P8+Q6 
A7=P8+Q8 
A8=P6+Q8 
B1=2.*(01*P1-Q1) 
B2=-2.»(01»P3+Q1) 
B3=-2.*(01*P3-Q3) 
B4=2.*(D1»P1+Q3) 
H5=2.*(01*Q5-P5) 
66=2.*(01*Q5+P7) 
B7=2.*(P7-Q7*01) 
B8=-2.*(P5+Q7*01) 
Cl=02+1. 
F1=FUN(A1,B1,C1) 
F2=FUN(A2,B2,C1) 
F3=FUN(A3,B3,C1) 
F4=FUN(A4,B4,C1) 
F5=FUN(A5,B5,C1) 
F6=FUN(A6,B6,C1) 
F7=FUN(A7,B7,C1) 
F8=FUN(A8,B8,C1) 
AB1=ABB(A1,B1,C1) 
AB2=ABB(A2,B2,C1) 
AB3=ABB(A3,B3,C1) 
AB4=ABB(A4,B4,C1) 
AB5=A8B(A5,B5,C1) 
AB6=ABB(A6,B6,C1) 
AB7=ABB(A7,B7,C1) 
AB8=ABB(A8,B8,C1) 
AA1=SQRT(A1) 
AA2=SQRT(A2) 
AA3=SQRT(A3) 
AA4=SQRT(A4) 
AA5=SQRT(A5) 
AA6=SQRT(A6) 
AA7=SQRT(A7) 
AA8=SQRT(A8) 
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BN1=BN(B1,C1,AB1,AA1) 
BN2=BN(B2,C1,AB2,AA2) 
BN3=BN(B3,C1,AB3,AA3) 
BN4=BN(B4,C1,AB4,AAA) 
BN5=BN(B5,C1,AB5,AA5) 
BiM6=BN{B6,CltAB6, AA6) 
BN7=BN(B7,C1,AB7,AA7) 
BiM8=BN(68fCl,AB8,AA8) 
CN1=CN(A1,B1,AB1,AA1) 
CN2=CN(A2,B2,AB2,AA2) 
CN3=CN(A3,B3,AB3,AA3) 
CN4=CN(A4,B4,AB4,AA4) 
CN5=CN(A5,B5,AB5,AA5) 
CN6=CN(A6,B6,A86,AA6) 
CN7=CN{A7,B7,AB7,AA7) 
CN8=CN(A8;B8,AB8,AA8) 
H1X=(P1»BN1+CN1®01)*F1 
H2X=(P3*BN2-CN2*01)*F2 
H3X=(P3*BN3-CN3*01)*F3 
H4X=(P1*BN4+CN4*01)*F4 
H5X=(P5*BN5-CN5)*F5 
H6X=(P7*BN6+CN6)*F6 
H7X=(P7*BN7+CN7)*F7 
H8X=(P5»BN8-CN8)»F8 
H1Y=(Q1*BN1-CN1)*F1 
H2Y=(Q1*BN2-CN2)*F2 
H3Y=(G3*BN3+CN3)*F3 
H4Y=(Q3*8N4+CN4)*F4 
H5Y=(Q5*BN5+CN5*01)*F5 
H6Y=(Q5*BN6+CN6*01)*F6 
H7Y=(07*BN7-CN7*01)*F7 
H8Y=(Q7*BN8-CN8*01)*F8 
QI=AI(K)+3I{K)*01 
QA=CI(K)*01+DI(K) 
H13X=H1X-H3X 
H24X=H2X-H4X 
H57X=H5X-H7X 
H68X=H6X-H8X 
H13Y=H1Y-H3Y 
H24Y=H2Y-H4Y 
H57Y=H5Y-H7Y 
H68Y=H6Y-H8Y 
SUM1=SUN1+QI*(H13X+H24X)+QA*(H57X+H68X) 
SUM2=SUM2+QI*(H13Y+H24Y)+QA*(H57Y+H68Y) 

200 CONTINUE 
C FIELDS DUE TO-COS + SIN ARRAYS OF CHARGES 

HCX=0. 
HCY=0. 
HSX=0. 
HSY=0. 
DO 300 1=1,20 
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KU1=U1(I) 
PII=0.05*I 
PIl=PII-0.05 
P1=P11-PI1 
P2=P1*P1 
P3=P11+PI1 
P4=P3*P3 
P5=P11-PII 
P6=P5*P5 
P7=P11+PII 
P8=P7*P7 
PD1=1.0/P1 
PD3=1.0/P3 
DO 300 J=1,KU1 
SI1=-S1(J,I) 
CII=-CC1(I,J) 
HSX=HSX+(SX1-SX3+SX2-SX4)*SI1 
HSY=HSY+(SY1-SY3+SY2-SY4)*SI1 
QJJ=0.05*J 
QJl=QJJ-0.05 
Q1=Q11-QJ1 
Q2=Q1*01 
C3=Q11+GJ1 
Q4=Q3*Q3 
IF (CIl) 210,211,210 

C THE FOLLOWINGS ARE FOR COS ARRAY OF CHARGES 
210 Q5=Q11-QJJ 

Q6=Q5*Q5 
Q7=Q11+0JJ 
Q8=Q7*Q7 
0QJl=l./SQRT{P2+02) 
DQJ2=1./SQRT(P2+Q6) 
DQJ3=l./SQRT(P4+02) 
DQJ4=1./SQRT(P4+Q6) 
DMJ1=1./SQRT(P4+Q8) 
DMJ2=1./SQRT(P4+Q4) 
DMJ3=1./SQRT(P2+Q8} 
DMJ4=1./SQRT(P2+Q4) 
CX1=(Q1*DQJ1-Q5*DQJ2)*PD1 
CX2=(Q1*DQJ3-Q5*DQJ4)*PD3 
CX3={Q7»DMJ1-Q3»DMJ2)*PD3 
CX4=(Q7*DMJ3-Q3»DMJ4)*PD1 
CY1=DQJ2-DQJ1 
CY2=DQJ4-DQJ3 
CY3=DMJ2-DMJ1 
CY4=DMJ4-DMJ3 
HCX=HCX+{CX1-CX3+CX2-CX4)*CI1 
HCY=HCY+(CYl-CY3+CY2-CY4)»CI1 

C THE FOLLOWINGS ARE FOR SINE ARRAY OF CHARGES 
211 IF (SID 212,300,212 
212 DQI1=1./SQRT(Q2+P6) 
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DQI2 =1 ./SQRT (Q2+P2) 
DQI3 = 1 ./SQRT (Q4+P6) 
DQI4 = 1 ./SQRT (Q4+P2) 
DMIl =1 ./SQRT (Q2+P4) 
DM 12 = 1 ./SQRT (Q2+P8) 
DMI3 = 1 ./SQRT (Q4+P4) 
DM 14 = 1 ./SQRT (Q4+P8) 
QD1= 1. 0/01 
0D3=1.0/Q3 
SX1=DQI1-DQI2 
SX2=DMI1-DMI2 
SX3=DMI3-DMI4 
SX4=DQI3-DQI4 
SY1=(P1*DQI2-P5*DQI1)*QD1 
SY2=(P7*DMI2-P3*DMI1)*QD1 
SY3=(P7*DMI4-P3*DMI3)*QD3 
SY4=(P1»DQI4-P5*DQI3)»QD3 

30C CONTINUÉ 
HTX=(SHX+HBX+SUM1+HCX+HSX)*0.16 
HTY=(SHY+HBY+SUM2+HCY+HSY)*0.16 
AB=HTX 
BC=HTY-APF 
AC=SQRT(AB«AB+BC*BC) 
ACCC=AB/AC 
ASSS=BC/AC 
AGL=ATAN(BC/AB)*57.2958+180. 
WRITE (2,400) P,Q,HTX,HTY 
WRITE (2,400) P,Q,ACCC,ASSS 

400 FORMAT (2F5.1,2F12.7) 
WRITE (3,402) P,Q,HTX,HTY,ACCC,ASSS,AGL 

402 FORMAT {2F5.1,5F12.7) 
500 CONTINUE 

STOP 
END 
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